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SUMMARY The genus Enterococcus comprises a ubiquitous group of Gram-positive
bacteria that are of great relevance to human health for their role as major caus-
ative agents of health care-associated infections. The enterococci are resilient and
versatile species able to survive under harsh conditions, making them well adapted
to the health care environment. Two species cause the majority of enterococcal in-
fections: Enterococcus faecalis and Enterococcus faecium. Both species demonstrate
intrinsic resistance to common antibiotics, such as virtually all cephalosporins, amin-
oglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remark-
ably plastic genome allows these two species to readily acquire resistance to further
antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resis-
tance, and vancomycin resistance, either through mutation or by horizontal transfer
of genetic elements conferring resistance determinants.

KEYWORDS Enterococcus, antibiotic resistance, horizontal gene transfer

INTRODUCTION

Enterococci are leading causes of health care-associated infections (HAIs) globally, in
particular urinary tract, soft tissue, and device-associated infections. Multidrug

resistance is common, which prolongs hospitalization time, increases treatment cost,
and increases the risk of treatment failure and death. In the past few decades, our

knowledge of enterococcal biology, ecology, virulence, and genetics has steadily

increased. However, there are still important questions about these pathogens that

remain to be solved, in particular how to effectively treat multidrug-resistant strains. In

this review, we present a general overview of the genus Enterococcus, the clinically
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relevant species, their mechanisms of infection and antibiotic resistance, the state of
the art in treatment, and challenges and perspectives for the future.

BASIC MICROBIOLOGY

The enterococci are ubiquitous Gram-positive bacteria that have been isolated from
soil, surface waters, and seawater; in association with plants; in fermented food
products; as part of the gut microbiota of both vertebrates and invertebrates; and as
causative agents of human disease (1–13). They have a low-GC genome content of
about 34 to 45%, a genome size ranging from 2.3 to 5.4 Mb with 2,154 to 5,107
predicted genes, and a genus core genome with the number of genes ranging from 605
to 1,037 depending on the data set and criteria used for analysis (14, 15). The
enterococcal pangenome is larger and reflects the highly plastic nature of their
genomes and particular niche adaptations.

The term “entérocoque” was first coined by Thiercelin in 1899, when he described
gut commensal bacteria with the ability to become pathogenic (16). Due to morpho-
logical and some biochemical similarities, the enterococci were considered part of the
genus Streptococcus (17, 18) and classified as group D streptococci until the mid-1980s.
Although four separated branches of streptococci were identified, the pyogenic strep-
tococci, the viridans streptococci, the lactic streptococci, and the enterococcus (19), the
term “enterococcus” was more considered a placeholder name for Gram-positive cocci
isolated from the gut/feces rather than a monophyletic group. As Sherman stated in
1938, “‘The enterococcus’ as this term is commonly used among bacteriologists, has
about as much biological meaning as the bear” (20). However, based on a detailed
analysis of biochemical and culture characteristics, in 1970, Kalina (21) proposed that
the so-called enteric streptococci should be placed in a genus of their own, the
Enterococcus. It was only in 1984 that the formal proposal of the genus Enterococcus
became more accepted (22), and it appeared as a properly recognized genus separated
from the streptococci in an editorial addendum to the 1986 edition of Bergey’s Manual
of Systematic Bacteriology (23). The genus Enterococcus has to date 58 described species
with valid publications (according to compiled information from the List of Prokaryotic
Names with Standing in Nomenclature [http://www.bacterio.net/enterococcus.html#r])
(24). The family Enterococcaceae was first proposed by Ludwig and collaborators (25) in
2009 based on 16S rRNA gene similarity and originally comprised Enterococcus, Vago-
coccus, Tetragenococcus, and Melissococcus. Other presumptive genera within the En-
terococcaceae are Catellicoccus (26) and Pilibacter (27); however, the precise phyloge-
netic position of Tetragenococcus, Melissococcus, Catellicoccus, and Pilibacter is not clear
due to the limited number of species in each genus that have been described and
sequenced and the observation that Melissococcus and at least one species of Tetrag-
enococcus may branch within Enterococcus (15, 28–30). The Enterococcaceae are in the
order Lactobacillales with other families of medical and economic importance, like
the Lactobacillaceae and the Streptococcaceae, class Bacilli in the phylum Firmicutes. The
number of predicted Lactobacillales-specific clusters of orthologous genes that appear
to be essential for these bacteria is 567 (31).

SPECIES DIFFERENTIATION AND LABORATORY DIFFERENTIATION

Enterococci are non-spore-forming ovoid bacteria (22) that exist individually or as
pairs, chains, or groups. They are chemo-organotrophic facultative anaerobes with
homofermentative metabolism, with lactic acid as the predominant end product of
carbohydrate fermentation (29).

Different selective media have been tested for the isolation and identification of
enterococci; however, there are no definitive biochemical tests to differentiate Entero-
coccus from other Gram-positive catalase-negative cocci. Most enterococci are oxidase
and catalase negative, salt tolerant (as high as 6.5%), resistant to 40% bile, esculin
hydrolytic, and able to grow in the presence of sodium azide (up to 0.4%). In addition
to the above-described characteristics, all described and tested species produce �-glu-
cosidase; leucine arylamidase; acid from the sugars D-fructose, galactose, �-gentiobiose,
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glucose, lactose, maltose, D-mannose, ribose, trehalose, cellobiose, and N-acetylgluco-
samine; and the glycosides salicin, methyl �-D-glucoside, amygdalin, and arbutin. In
general, enterococci are urease negative and do not produce acid from D-arabinose,
erythritol, D- and L-fucose, methyl �-D-xyloside, and L-xylose; these metabolic charac-
teristics have been used in the development of commercial testing kits. Growth occurs
at between 10°C and 45°C, with optimal growth for most species at 35°C to 37°C (32).
The enterococci are remarkably resistant to desiccation (32). Only two enterococcal
species are reported to be mobile: Enterococcus gallinarum and E. casseliflavus/E.
flavescens (33–36).

As early as 1919, Orla-Jensen (discussed in reference 37) proposed the separation of
Streptococcus faecalis and Streptococcus faecium into two different species based on the
ability of the former to tolerate potassium tellurite and produce black colonies. Addi-
tional biochemical tests, such as testing of the ability to reduce tetrazolium salts to the
chromogenic formazan in the presence of glucose, were introduced along the way to
improve species identification (38–42). A widely used system for classification and
differentiation of enterococci was introduced by Lancefield in a seminal paper in 1933
based on serological groups (43). In this paper, the enteric streptococci were part of
antigenic group D, and her classification system is still in use to differentiate Entero-
coccus from most Streptococcus species.

If grown on horse blood agar, enterococci can be alpha-, beta-, or nonhemolytic and
form 1- to 2-mm colonies with a wet appearance (44). Based on their metabolic
capabilities, different selective culture media have been developed for the isolation of
enterococci; these selective media frequently contain bile salts, sodium azide, antibi-
otics, and esculin or tetrazolium salts. Not all enterococcal species are able to grow in
these selective media, but the most clinically relevant species grow well. Most clinical
testing for enterococcal identification includes catalase testing, pyrrolidonyl
arylamidase/pyrrolidonyl-aminopeptidase (PYR) testing and a bile esculin hydrolysis
test. Commercial kits have been developed to standardize and optimize the detection
of enterococci in the clinical setting, all requiring previous isolation and culture of the
organisms, potentially delaying diagnosis. Additionally, accurate differentiation be-
tween species in species groups is not always achieved based on phenotypic tests only
(45).

The identification of enterococci to the species level has clinical relevance due to the
antibiotic resistance profiles of the different pathogenic enterococci. Since the intro-
duction of molecular techniques into clinical microbiology laboratories, improved
species identification and expedited testing options have been developed; these
techniques are also useful for epidemiology and surveillance and in the diagnosis of
difficult cases. Molecular diagnosis techniques are gaining popularity; however, in
resource-limited regions, they are still not widely in use in the clinical microbiology
laboratory. Molecular-based methods have the potential advantages of increased
diagnostic accuracy, providing information about antimicrobial resistance, and reduced
time and cost compared to traditional cultivation and phenotypic testing.

Among the newer systems for classification and identification of enterococci are
matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-
TOF MS), nucleic acid amplification tests (NAATs), peptide nucleic acid fluorescent in
situ hybridization (PNA-FISH), and multilocus sequence typing (MLST).

MALDI-TOF MS-based identification is a powerful, fast, and reliable method that is
starting to gain traction more broadly for routine detection in clinical microbiology
laboratories for species identification (46, 47). The clinical use of MALDI-TOF MS-based
methods allows for rapid identification of enterococci directly from blood culture
bottles, potentially reducing the time to antimicrobial treatment initiation (48). MALDI-
TOF MS has a high sensitivity, being able to identify about 94% of isolates to the species
level, including differentiating between closely related species (49, 50); additionally, it
could potentially be useful for antibiotic resistance profiling, for instance, for detection
of the presence of van genes, although it is not yet in use in clinical practice (51, 52).

NAAT methods are based on PCR amplification and subsequent sequencing or
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array/hybridization or real-time PCR amplification (53) of one or more genes that are
useful for organism identification to the genus or species level and equally important
to detect antimicrobial resistance genes. Different genes have been used for diagnostic
and phylogenetic purposes. 16S rRNA gene sequencing is commonly used to identify
bacterial species and allows discrimination of enterococci to the species level (45,
54–56); however, differentiating from species within a species group, such as the E.
faecium group, can be less accurate (49, 57, 58). Several other genes have been
proposed to help differentiate enterococcal species, such as ddl (D-alanine:D-alanine),
atpA (ATP synthase), groES and groEL, sod (superoxide dismutase), and tuf (elongation
factor Tu) (58–63), although, to our knowledge, no systematic comparison of the
specificities and sensitivities of different genes has been done. Multiplexed real-time
PCR permits testing for more than one gene, allowing the simultaneous determination
of the species and potential antibiotic resistance genes (64), and genus- and species-
specific assays have been developed, aimed at rapid detection (65). PNA-FISH targeting
species-specific rRNA allows for rapid detection of the presence of enterococci from
blood culture bottles. These tests allow differentiation of E. faecalis, E. faecium, and
other less-common enterococcal species (66). Commercial clinically approved systems
have been developed based on the different technologies described above, but a
detailed description of commercial testing methods is beyond the scope of this review.

MLST provides strain identification and has been used to study molecular epidemi-
ology and also to study outbreaks (67, 68), largely replacing pulsed-field gel electro-
phoresis (PFGE) analysis because of higher reproducibility and easier implementation.
Recently, a new iteration to improve resolution has been implemented by performing
core genome MLST (cgMLST), which expands the number of genes from 7 or so
housekeeping genes to up to 1,423 (69) and is more cost-effective to implement than
whole-genome sequencing (WGS) and average nucleotide difference analysis (70). In a
study comparing MLST versus WGS for 495 clinical E. faecium isolates plus 11 reference
genomes, the authors found high discrepancy between the two methods, and they
mostly attributed these differences to a lack of robustness of MLST due to a high
degree of recombination between isolates (71). Bayesian analysis of population struc-
ture (BASP) is a method that improves identification of deep-branching lineages and
recombination and is more robust than MLST-based studies using DNA sequence or
molecular marker data (72).

CLINICALLY SIGNIFICANT SPECIES AND LESS-COMMON SPECIES

Enterococci are considered commensal organisms of the human gastrointestinal
tract; however, they can also be pathogenic, mostly linked to HAIs, commonly causing
urinary tract infection (UTI), bacteremia, endocarditis, burn and surgical site wound
infections, abdomen and biliary tract infections, and infection of catheters and other
implanted medical devices. In most surveys, enterococci are the third most common
cause of native valve endocarditis, after Staphylococcus aureus and viridans streptococci
(73, 74). In humans, E. faecalis and E. faecium are the most abundant enterococcal
species. All Lactobacillales comprise less than 1% of the gut microbiota in adults with
westernized diets (75, 76). In Hadza hunter-gatherers and in a group of rural Papua New
Guineans, there seems to be an enrichment for enterococci (77, 78).

MacCallum and Hastings (79) first reported a putative enterococcal infection in 1899,
describing a case of endocarditis and offering a detailed description of the isolated
bacteria, which they dubbed Micrococcus zymogenes. At around the same time, Thier-
celin (16) described round commensal enteric bacteria (an entérocoque) capable of
causing diarrheal disease and septicemia. Other early reports describe infections caused
by Streptococcus/Enterococcus faecalis as the causative agent of endocarditis, puerperal
fever, wound infections in First World War soldiers, bacteremia, and fever (80–84).
Interestingly, the early literature also describes attempts at curing infections prior to the
broad introduction of antibiotics by preparing a vaccine from the patient’s own fecal
contents, which successfully cleared the symptoms (83). The incidence of enterococcal
infections has been increasing steadily since the late 1970s (13, 85, 86). In both Europe
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and the United States, enterococci at the genus level are the 2nd most common
pathogens associated with HAI, E. faecalis was the 5th most frequently isolated organ-
ism from catheter-associated urinary tract infections (CAUTIs) and third for central
line-associated bloodstream infections (CLABSIs), and E. faecium was the 11th and 5th,
respectively (87–89).

The success of enterococci in establishing themselves as HAI agents is partly due to
their intrinsic resistance to many antimicrobials and their capacity to acquire new
resistance traits. The most prevalent species in HAIs is E. faecalis, which is more virulent
than E. faecium but with less-dramatic levels of intrinsic and acquired antimicrobial
resistance. Historically, E. faecalis has been isolated in about 50.3% of all enterococcal
HAIs; however, there is an increasing trend for E. faecium-caused infections, mostly
associated with the rise of vancomycin- and �-lactam-resistant E. faecium strains (90).
Roughly 10% of E. faecalis isolates are vancomycin resistant, compared to 80% of E.
faecium isolates (89). Together, E. faecalis and E. faecium cause about 75% of all typed
enterococcal infections (89). A timeline highlighting the major events in the establish-
ment of enterococci as important HAI agents is shown in Fig. 1.

Nontyped enterococci, including nontyped E. faecium and E. faecalis and all
other non-faecalis non-faecium enterococci (OE), comprise about 24.6% of all
enterococcal infections (89); however, the percentage of OE is not reported sepa-
rately from nontyped putative E. faecium and E. faecalis infections. The incidence of
infections caused by OE has been on the increase; cases of OE bacteremia in U.S.
hospitals ranked 10th among HAIs in the period comprising 2011 to 2014 (89),
compared to 11th in the period comprising 2009 to 2010 (91). Species such as E.
casseliflavus, E. gallinarum, E. durans, E. hirae, E. mundtii, E. avium, and E. raffinosus
have been associated with human infection mostly in people with concurrent
hematological malignancies, neutropenia, and previous corticosteroid treatment
(92). E. durans, E. hirae, and E. mundtii belong to the E. faecium species group (29),
suggesting that the capacity to become pathogenic was present in the shared
common ancestor of this group. E. gallinarum and E. casseliflavus have intrinsically

FIG 1 Timeline of relevant events in the history of enterococci as human pathogens (blue rectangles), appearance of antibiotic resistance
(green rectangles), and antibiotic clinical debut (red rectangles). The timeline begins in 1899 with the first formal description of putative
enterococci, as round enteric bacteria. The timeline then jumps to 1964 to the first description of the transfer of chloramphenicol
resistance, only 15 years after its clinical introduction. Similar stories occurred for aminoglycosides and glycopeptides. Since the late 1980s,
the prevalence of vancomycin-resistant (VR) E. faecium has been increasing, as has the overall percentage of enterococcal HAIs. Resistance
to the newest introduced antibiotics, linezolid and daptomycin, emerged very rapidly after their clinical introduction, but the majority of
enterococci remain susceptible. MDR, multidrug resistance.
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low-level resistance to vancomycin, which could be a potential treatment problem
if rates of infections caused by these organisms continue to rise (93, 94). A recent
study by Manfredo Vieira and colleagues (95) implicates E. gallinarum in the
induction of autoantibodies linked to autoimmune disease after translocation from
the gut to the liver in mice with autoimmune susceptibility and proposed that a
similar mechanism could occur in people with autoimmune diseases such as lupus
erythematosus, suggesting a new role for enterococci in human health. E. pallens,
E. gilvus, and E. raffinosus belong to the same species groups (14, 15, 29). E. pallens
has been associated with spontaneous peritonitis in patients with liver cirrhosis and
has been isolated from ascites fluid, so far limited to 4 cases reported in Quebec
Province, Canada (96, 97). The importance of this organism as a human pathogen
is yet to be determined. E. gilvus was isolated as part of mixed infections with E.
faecium and E. casseliflavus from the bile of a patient with cholecystitis (96). Because
most infections caused by OE occur in severely ill patients with other comorbidities,
it is difficult to establish the mortality rate of bacteremia caused by these organisms
(98).

VIRULENCE

The enterococci are not highly virulent organisms, and the success of E. faecalis and
E. faecium as pathogens in the hospital setting is primarily related to their survival
capabilities in a hostile antimicrobial-rich environment. That said, several traits in both
species have been linked with their pathogenic potential and ability to cause disease.
These include the ability to evade the immune system; the capacity to attach to host
cells, the extracellular matrix (EM), and inert materials, such as a variety of medical
devices; and the ability to form biofilms that make them more resistant to antibiotic
killing and phagocytic attack (99). Virulence factors are more evident in E. faecalis,
perhaps explaining its still leading role in enterococcal infections.

Many proteins have been described as part of the virulence repertoire of pathogenic
enterococci.

Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs)
are surface elements that help enterococci to adhere to host tissues, helping in the
initiation of infection (100).

In E. faecalis, MSCRAMM genes are found in most strains and are expressed in vivo
during human infection (101). One of the best-characterized MSCRAMMs is Ace, a
collagen-binding protein (102) that enhances early heart valve colonization, suggesting
an important role in the early establishment of endocarditis (103).

MSCRAMM genes are enriched in clinical isolates of E. faecium, and genes of this
family present in the genome were more abundant in endocarditis isolates (104). In E.
faecium, Acm (a collagen-binding protein) is the best-characterized MSCRAMM. The
acm gene is primarily present in health care-associated isolates (present in 99% of
analyzed isolates), although one study found that it was disrupted by a transposon in
commensal isolates, becoming nonfunctional (105).

Pilin gene clusters (PGCs) are present in both E. faecalis and E. faecium and encode
LPxTG-like motif surface proteins that are responsible for the assembly of long fila-
mentous structures extending from the surface, called pili. Like the MSCRAMMs, pili can
function as adhesins (106). In E. faecalis, the ebp (endocarditis- and biofilm-associated
pilus) PGC is associated with initial adherence and biofilm formation and has been
implicated in the pathogenesis of endocarditis and UTI (107). In E. faecium, the role of
the pilum is not entirely clear; however, there seem to be differential regulation of the
PCG and differential assembly of pilus proteins between clinical isolates and commen-
sal strains (108, 109).

Cytolysin (Cyl) (also called hemolysin), encoded by the cylLL and cylLS genes,
contributes to virulence in E. faecalis infections. Cyl is a secreted two-peptide lytic
protein that damages host cells and promotes infection. It also has bacteriocin activity,
damaging other Gram-positive organisms (110–112). The cytolysin operon is normally
located on mobile elements such as conjugative plasmids or within the pathogenicity
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island (PAI) and is often found in association with aggregation substance genes (113).
Aggregation substance is a pheromone-induced surface protein that plays dual roles in
mating pair formation during conjugation and virulence. It is involved in vegetation
formation in infective endocarditis, extracellular matrix adherence, and phagocytosis
protection, and it potentiates the pathogenic effect of Cyl (113–115).

Another virulence factor that increases the ability of E. faecalis to cause disease is
gelatinase (GelE), a matrix metalloproteinase that hydrolyzes gelatin, collagen, and
other proteins. Gelatinase plays a role in the development of endocarditis (116) and
inhibits complement-mediated responses (117). gelE is cotranscribed with sprE, a gene
encoding a serine protease; together, the two genes contribute to virulence (118). The
expression of both genes is under the control of the fsr locus, a master regulator which
also plays a role in biofilm formation, the expression of surface proteins, and metab-
olism (119). The cell wall-associated enterococcal surface protein (Esp) (120) contributes
to cell adhesion in both E. faecalis and E. faecium, playing a role in urethral colonization
(121) and endocarditis (122) and promoting biofilm formation (121, 123, 124). However,
by itself, Esp is neither necessary nor sufficient to successfully establish infection and is
not present in all clinical isolates. The phosphotransferase system (PTS) genes encode
transmembrane proteins that participate in sugar intake. Diversification of the PTS
allows enterococci to use a broad variety of sugars as carbohydrate sources and better
adapt to changing environments. The PTS can act as part of the general stress response
(125), as virulence factors helping the enterococci to colonize and survive within the
host (126), and in biofilm and endocarditis development (127).

Genes encoding several of these virulence factors are often colocated in PAIs or
mobile elements, facilitating their spread between isolates. PAIs are large elements that
can be acquired by horizontal transfer and confer virulence to bacterial pathogens (128,
129). Several in-depth reviews of enterococcal virulence are recommended (130–133).

ANTIMICROBIAL SUSCEPTIBILITY AND INTRINSIC MECHANISMS OF RESISTANCE

E. faecalis and E. faecium are characterized by their reduced susceptibility to many
agents that are quite active against streptococci and staphylococci. A list of antimicro-
bial agents to which enterococci are resistant is included in Table 1. Among the
�-lactams, they are intrinsically resistant to virtually all cephalosporins (with possible
exceptions being ceftaroline and ceftobiprole, which have in vitro activity against E.
faecalis), antistaphylococcal penicillins, and aztreonam (134). E. faecalis strains can be
susceptible in vitro to carbapenems, but there are few clinical data supporting the use
of these agents for treatment of human infections. Enterococci are intrinsically suscep-
tible to vancomycin but resistant to clindamycin, trimethoprim-sulfamethoxazole, and
clinically achievable concentrations of aminoglycosides. They are intrinsically suscep-

TABLE 1 Antimicrobial resistance in enterococci

Antimicrobial class (agents)
Representative resistance
gene(s)/operon(s) Mechanism of resistance

Aminoglycosides (gentamicin, kanamycin) aac-2=-aph-2�-le, aph-3=-IIIa Modification of the aminoglycoside
�-Lactams pbp4 (E. faecalis), pbp5 (E. faecium) Reduced affinity for the antibiotic
Chloramphenicol cat Acetylation of chloramphenicol
Clindamycin lsa(A) Putative efflux
Daptomycin liaFSR Alteration in membrane charge and fluidity
Erythromycin ermB Ribosomal methylation
Fluoroquinolones gyrA, parC Modifications in quinolone resistance-determining region
Glycopeptides vanA, vanB, vanD, vanM Modified peptidoglycan precursors terminating in D-lactate

vanC, vanE, vanG, vanL, vanN Modified peptidoglycan precursors terminating in D-serine
Oxazolidinones rRNA genes Mutations reducing affinity

cfr Methylation of 23S rRNA
Rifampin rpoB Point mutations reducing affinity
Streptomycin ant-6 Modification of streptomycin
Tetracyclines tet(L) Efflux

tet(M) Ribosomal protection
Tigecycline tet(L), tet(M) Increased expression
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tible to tetracyclines and erythromycin, although acquired resistance to these agents is
widespread (except for tigecycline) (135, 136). The newer agents linezolid, tedizolid,
daptomycin, televancin, and oritavancin are active against enterococci, and the pristi-
namycin combination quinupristin-dalfopristin is active against E. faecium only. Fluo-
roquinolones have activity against enterococci, although ciprofloxacin’s MICs are bor-
derline for non-urinary-tract infections, and fluoroquinolone resistance is common in
clinical E. faecium strains (137). In the clinical setting, ampicillin remains the treatment
of choice for susceptible strains in patients who can tolerate this agent.

Enterococcal resistance to �-lactams is attributable to the expression of a low-
affinity penicillin-binding protein (PBP) designated PBP4 in E. faecalis and PBP5 in E.
faecium (138–140). Strains from which these pbp genes have been deleted exhibit
reduced MICs for active �-lactams and reductions into the susceptible range for
�-lactams that have poor activity against wild-type strains (141, 142). Many enterococ-
cal strains also exhibit tolerance to the bactericidal activity of the active �-lactams, with
minimal bactericidal concentrations greatly exceeding MICs (143). This tolerance has
clinical significance in the treatment of endocarditis, with cure rates with �-lactam
antibiotics alone being approximately 40% (144). The addition of streptomycin or
gentamicin to an active �-lactam results in bactericidal synergism in vitro and yields
clinical cure rates exceeding 70% (145). Experiments performed by Moellering and
Weinberg (146) in the 1970s attributed this synergism to increased streptomycin
penetration into the cell in the presence of penicillin or vancomycin, implying that the
killing activity was provided by the aminoglycoside, once it achieved entry into the cell,
facilitated by the cell wall-active agent. More recently, clinical data indicate that
outcomes of E. faecalis endocarditis treatment are equivalent with combinations of
ampicillin, which is active against E. faecalis, and ceftriaxone, which is not (147, 148).
Although the mechanism for this apparent clinical synergism is not clear at present, it
has been postulated that the combination of the two antibiotics inhibits all the E.
faecalis PBPs more effectively than either antibiotic alone (149).

Resistance to clinically achievable concentrations of aminoglycosides has been
attributed to the poor penetration of these agents through the enterococcal cell
envelope (146). The reason for this poor penetration is not clear, but it has been
postulated that enterococcal metabolism is essentially anaerobic, precluding aminogly-
coside transport across the cytoplasmic membrane, which is an oxygen-dependent
process. Clindamycin resistance in E. faecalis is attributable to the lsa(A) gene, which is
believed to encode an ABC superfamily of proteins that confers resistance to lincos-
amides, pleuromutilins, and streptogramin A antibiotics from the cell (150). Resistance
to trimethoprim-sulfamethoxazole in enterococci is an in vivo phenomenon. In vitro,
wild-type enterococci appear to be susceptible to this combination, but trimethoprim-
sulfamethoxazole is not effective in treating enterococcal infections in animal models.
This appears to be due to the capacity of enterococci to absorb folate from the
environment, thereby bypassing the steps toward folate synthesis blocked by the
combination (151). There are no compelling clinical data on the effectiveness of
trimethoprim-sulfamethoxazole in the treatment of human enterococcal infections.

ACQUIRED ANTIMICROBIAL RESISTANCE
Resistance to �-Lactams

As noted above, enterococci are intrinsically resistant to most �-lactams, being
susceptible to only a limited number of penicillins (ampicillin, mezlocillin, penicillin,
and piperacillin). Resistance to these penicillins is achievable through two mecha-
nisms. The first, and least important, is the production of �-lactamase (152). A number
of strains and some outbreak strains of E. faecalis that produce �-lactamase have been
reported. Molecular analysis shows that in all cases, this �-lactamase is identical to that
produced by S. aureus, in some cases within genetic regions identical to that of the S.
aureus �-lactamase transposon Tn551 (153). The S. aureus �-lactamase is a narrow-
spectrum enzyme that is active only against the penicillins that happen to have activity
against E. faecalis. Expression of the �-lactamase in E. faecalis differs from that in S.
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aureus in that �-lactamase transcription is not inducible by exposure to �-lactam
agents, and it appears that the enzyme remains membrane bound. The consequence
of these two differences is that expression stays at a low level and does not confer
significant resistance with a standard inoculum (154). With a high inoculum, however,
animal studies suggest that enterococcal �-lactamase production compromises
�-lactam therapy but can be counteracted by the addition of a �-lactamase inhibitor
(155). Reports of �-lactamase production in strains of E. faecium are quite rare, and the
strains expressing it have not been extensively analyzed.

High-level penicillin resistance in E. faecium is due to the expression of low-affinity
PBP5 (142). Some resistant strains have been shown to express increased quantities of
PBP5, although this has not been the most frequent mechanism of resistance. The most
common mechanism is through a mutation in the pbp5 gene leading to amino acid
substitutions in or near the active site of the enzyme (142, 156, 157). Molecular
epidemiological data suggest that highly ampicillin-resistant strains fall into relatively
few lineages that have spread widely, largely in hospitals, causing clinical infections and
colonization of patients exposed to a variety of antibiotics (158). In many centers, rates
of high-level ampicillin resistance in E. faecium exceed 70% (89).

Higher-level resistance to penicillins in E. faecalis is a much rarer event than in E.
faecium. In one instance (138), increased expression of low-affinity PBP4 was implicated,
but other cases have implicated amino acid changes within the enzyme itself. A recent
report showed that reduced susceptibility in E. faecalis appeared due to the combina-
tion of increased expression of PBP4 (resulting from an adenine deletion upstream of
the promoter sequence) and an alanine-to-tyrosine substitution adjacent to the active
site (159). A second amino acid substitution was present in the N-terminal region of the
protein but did not contribute to resistance. The mutated enzyme had a lower melting
temperature, suggesting that it was less stable, offering a possible explanation as to
why such mutant enzymes appear to be rare. In this case, the patient from whom the
strain was isolated had been exposed to several years of treatment with aminopeni-
cillins for a prosthetic knee infection.

The fact that deletion of PBP4 or PBP5 results in �-lactam susceptibility of E. faecalis
and E. faecium, respectively, indicates that these proteins are required for resistance
(141, 142). They are not, however, sufficient for resistance, since other proteins that are
required for resistance expression have been found. In E. faecalis, the CroRS regulatory
locus is required for cephalosporin resistance, as is a serine-threonine eukaryote-like
kinase, IreK (also known as Stk) (160, 161). The presence of genes for two of the three
E. faecalis class A PBPs (ponA and pbpZ) is also required for resistance to cephalosporins
in E. faecalis (141). Deletion of the equivalent class A PBPs in E. faecium also results in
increased cephalosporin susceptibility, but the susceptibility is restricted to certain
cephalosporins (cefepime and ceftriaxone) that have a common side chain (141, 162).
It is also an unstable phenotype that converts at a high frequency back to cephalo-
sporin resistance, which in some cases is influenced by the E. faecium version of Stk
(163). Cephalosporin resistance in this instance was also associated with the expression
of a protein found associated with PBP5 by affinity chromatography, which has been
designated P5AP (penicillin binding protein 5-associated protein) (163). In an E. faecium
strain in which pbp5 was deleted, resistance to ampicillin emerged through the activity
of an L,D-transpeptidase insensitive to inhibition by penicillins (but susceptible to
carbapenems) (164). There is still much to be learned about how the low-affinity PBPs
interact with their substrates and with �-lactam antibiotics and about the combination
of cell wall synthesis proteins that leads to resistance in enterococci.

Resistance to Glycopeptides

The glycopeptide antibiotic vancomycin remained virtually universally active against
E. faecalis and E. faecium for nearly three decades after its clinical introduction. In the
early 1980s, strains began to emerge, first in Europe and then in the United States, that
expressed inducible, high-level resistance to vancomycin and the more recently intro-
duced antibiotic teicoplanin (165, 166). Resistance was attributable to the acquisition of
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operons that altered the nature of peptidoglycan precursors, substituting a D-lactate for
the terminal D-alanine in the UDP-MurNac pentapeptide (167, 168). In the process of
establishing the peptide cross-link essential for cell wall stability, the terminal D-alanine
is removed from the chain to provide the energy for the transpeptidation reaction.
Vancomycin binds to the terminal D-alanine of the cell wall precursor, preventing PBP
access (vancomycin, because of its large size, also interferes somewhat with the
adjacent transglycosylation reaction). Vancomycin binds to pentapeptide stems termi-
nating in D-lactate with a roughly 1,000-fold-lower affinity than it does to those
terminating in D-alanine and therefore is not an effective inhibitor of cell wall synthesis
in these strains.

The first glycopeptide resistance operon that was described was the vanA operon
(167), and this remains the most commonly encountered operon in the clinical setting.
The operon consists of seven genes whose combined purpose is to replace the
glycopeptide-susceptible pentapeptide terminating in D-Ala-D-Ala with a glycopeptide-
resistant pentadepsipeptide precursor terminating in D-Ala-D-Lac. vanS encodes a
transmembrane sensor kinase that is involved in detecting glycopeptides in the envi-
ronment and phosphorylating VanR, whereby VanR is converted from a repressor of
operon transcription to an activator (169). VanR regulates 3 downstream genes: vanH,
vanA, and vanX. VanH is a dehydrogenase that reduces pyruvate to D-lactate, and VanA
is a ligase that binds a D-alanine to the newly formed D-lactate to form a D-Ala-D-Lac
depsipeptide (167), which is then ligated to the UDP-MurNAc tripeptide peptidoglycan
precursor by the cellular adding enzyme. vanX encodes the VanX amidase, whose
purpose is to cleave D-Ala-D-Ala, thereby reducing cellular quantities of D-Ala-D-Ala that
can be used to create vancomycin-susceptible peptidoglycan precursors (170). Two
additional genes that are not essential for glycopeptide resistance expression are
included in the operon. vanY is a carboxypeptidase that cleaves the terminal D-alanine
from cellular pentapeptide precursors, further reducing vancomycin-susceptible pre-
cursors (171). The final gene is vanZ, which encodes a protein of unknown function that
contributes to resistance to the glycopeptide teicoplanin (172).

VanC-type vancomycin resistance operons, first described as intrinsic components of
E. gallinarum and E. casseliflavus, produce peptidoglycan precursors terminating in
D-Ala-D-Ser (93, 173). They encode a (serine) racemase (VanT), a D-Ala-D-Ser ligase
(VanC), a combined dipeptidase-carboxypeptidase(VanXY), and the products of the
regulatory genes vanR and vanS. The vanG operon has an additional carboxypeptidase,
an analogue of VanW from the vanB operon, and an additional regulatory gene (vanU)
(174).

There have been nine glycopeptide resistance operons described over the past few
decades (Fig. 2). They fall into two general categories: those that replace the terminal
D-Ala with a D-lactate (vanA, vanB, vanD, and vanM) (175–177) and those that replace
the terminal D-Ala with a D-serine (vanC, vanE, vanG, vanL, and vanN) (94, 178–180). As
opposed to the D-Lac-type operons, the operons encoding proteins that result in
precursors terminating in D-Ser confer relatively lower levels of resistance to vancomy-
cin but remain susceptible to teicoplanin. The mechanisms of the D-Lac operons all
confer resistance to vancomycin and teicoplanin, although the vanB operon is not
induced by the presence of teicoplanin, so strains in which the induction mechanism
is intact will appear susceptible to teicoplanin (181). Clinical experience using this agent
to treat VanB-type vancomycin-resistant enterococci (VRE) indicates that treatment
failure is common, due to the emergence of strains with constitutive expression of the
operon (182). The vanC operons confer resistance to vancomycin but not teicoplanin
(173).

The vanA operon is carried by the Tn3 family transposon Tn1546 (167), which can be
located on the chromosome or on transferable plasmids. The vanB operon is most
commonly carried by Tn5382 (also referred to in some publications as Tn1549) (183), a
Tn916 family element that also may be incorporated into the chromosome or a plasmid.
The vanC operons are intrinsic to E. casseliflavus and E. gallinarum (94), which are rare
causes of human infection (173). The remainder of the operons are found rarely,
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although local outbreaks of some of them have been reported. The vanN and vanG
operons have been shown to be transferable, with vanG being found within different
integrative and conjugative element (ICE)-type elements (184).

Resistance to Aminoglycosides

As noted above, enterococci are intrinsically resistant to clinically achievable con-
centrations of aminoglycosides. Aminoglycosides are useful for achieving bactericidal
synergism in combination with cell wall-active agents, which is important in the
treatment of enterococcal endocarditis (144, 146). Since the clinical utility of these
combinations has been recognized, strains that have expressed high levels of resistance
to aminoglycosides have emerged (MICs of �500 �g/ml for gentamicin and
�2,000 �g/ml for streptomycin) (185). This level of resistance is due to the expression
of aminoglycoside-modifying enzymes and negates the synergistic benefit of the
combinations in the clinical setting. The gene encoding the most common enzyme
conferring resistance to gentamicin (and other aminoglycosides except streptomycin)
is aac-6=-Ie-aph-2�, classically found within Tn4001 in staphylococci and other variants
in enterococci (186, 187). In some studies, this enzyme has been the exclusive cause of
high-level gentamicin resistance in enterococci (188). Expression of a second phospho-
transferase [APH(2�)-lc] has been associated with lower gentamicin MICs (ca. 256 �g/ml)
but still negates ampicillin-aminoglycoside synergism. Such isolates may not be de-
tected by clinical microbiology laboratories using concentrations of 500 or 1,000 �g/ml
to screen for high-level resistance (189). Resistance to streptomycin in enterococci is
most commonly encoded by the ant-6 gene (190). Very high levels of streptomycin
resistance have also been attributed to ribosomal mutations (185). Finally, intrinsic
resistance to kanamycin and tobramycin in E. faecium is attributable to chromosomally
encoded AAC(6=)-li (191).

FIG 2 Depictions of known glycopeptide resistance operons. (A) The four glycopeptide resistance operons that yield peptidoglycan
precursors terminating in D-Ala-D-Lac. Arrows reflect the directions of transcription and relative sizes of the open reading frames. (B) The
five glycopeptide resistance operons that yield peptidoglycan precursors terminating in D-Ala-D-Ser. See the text for descriptions of the
open reading frame roles.
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Resistance to Fluoroquinolones

Ciprofloxacin and levofloxacin have marginal activity against enterococci, and their
use is restricted to the treatment of urinary tract infections due to susceptible strains.
Moxifloxacin is more potent against Gram-positive bacteria than the other two but still
exhibits only intermediate activity versus enterococci (192). High-level resistant strains
have been shown to contain mutations in both gyrA and parC (193, 194). Some strains
have mutations in only parC, suggesting that this topoisomerase may be the primary
target of fluoroquinolones in enterococci. There has been suggestion in some studies
that efflux pumps are also involved in enterococcal fluoroquinolone resistance, but
specific efflux pumps have not been identified (195).

Resistance to Linezolid

Linezolid remains broadly active against both E. faecalis and E. faecium (196).
Resistance frequently occurs through mutations in the rRNA genes. E. faecium has
six such ribosomal genes, while E. faecalis has four, and the level of resistance
expressed depends upon the number of these genes that contain the relevant
mutations (197). Once a single such mutation occurs, continued selective pressure
by linezolid has been associated with “gene conversion,” in which further genes
acquire the same mutation through homologous recombination with the mutated
gene. Conversely, if there remains a single such wild-type gene, then gene conver-
sion can lead to restoration of susceptibility in the absence of antibiotics (198),
suggesting that there is some selective disadvantage to these mutations in the
absence of selective pressure. Resistance due to changes in ribosomal proteins L3,
L4, and L22 appears to be extremely rare.

Enterococci can also develop resistance to linezolid through acquisition of the cfr or
cfr(B) gene (199), which encodes a methyltransferase that modifies A2503 in bacterial
23S rRNA. This enzyme confers resistance to a variety of antimicrobial classes, including
phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A, as well as
decreased susceptibility to the 16-membered macrolides spiramycin and josamycin. Cfr
is commonly plasmid encoded and transferable and has been associated with out-
breaks of linezolid resistance in a variety of Gram-positive species (200). Finally,
plasmid-mediated resistance has also been attributed to the acquisition of optRA, which
encodes a putative ABC transporter (201).

Resistance to Daptomycin

Daptomycin is a cyclic lipopeptide that acts by interacting with the cytoplasmic
membrane in the presence of physiological concentrations of calcium, resulting in a
variety of alterations in cell membrane characteristics. It is a cationic peptide whose first
attraction to the cell membrane is through its interaction with phosphatidylglycerol. In
the presence of physiological concentrations of calcium, daptomycin aggregates and
then inserts into the membrane. This membrane insertion is followed by the transition
of phospholipids and daptomycin to the inner leaflet of the membrane. The result
includes ion leakage, which may result from daptomycin “pores” in the membrane or
through a “lipid extraction effect,” whereby lipids aggregate in areas on the membrane
surface and are then extracted. Temporary water channels may be formed by this
extraction, with associated ion leakage.

Resistance to daptomycin occurs through a variety of mutations that have
different effects depending on the species. In E. faecalis, resistance is associated
with a movement of membrane phospholipids away from the septum, which may
divert daptomycin from the septum. In E. faecium, resistance is associated with
repulsion of daptomycin from the cell membrane due to changes in membrane
phospholipids, similar to that seen in resistant strains of S. aureus (202). Mutations
resulting in daptomycin resistance are commonly identified in the liaFSR operon,
which encodes a 3-component regulatory pathway involved in the response to cell
membrane stress. Daptomycin-resistant E. faecium strains that have mutations in
the liaFSR system also exhibit synergism between ampicillin and daptomycin (203).
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The clinical importance of this synergism remains to be established. Although
overall rates of daptomycin resistance remain low, the risk of acquiring daptomycin
resistance during therapy is substantial.

Resistance to Tetracyclines

Tetracycline resistance in enterococci is quite prevalent and frequently mediated by
a ribosomal protection mechanism mediated by tet(M), which is most often carried by
conjugative transposons (CTns) related to Tn916 (204, 205). Efflux-mediated resistance
mechanisms encoded by genes such as tet(L) are also present in enterococci (205).
Tigecycline is a minocycline derivative that is broadly active because it is not suscep-
tible to most tetracycline resistance mechanisms, including Tet(M) and Tet(L). Despite
this characteristic, E. faecium strains have been reported in which resistance to tigecy-
cline has been tentatively attributed to the overexpression of plasmid-mediated tet(L)
and tet(M) genes (206).

GENOME PLASTICITY

As a major cause of hospital-acquired infections, enterococci have become an
important problem in clinical practice. Their abilities to survive in the environment and
tolerate disinfectants, their intrinsic antimicrobial resistance, and their remarkable
genome plasticity have helped to establish these organisms as frequent inhabitants of
hospitals and other health care facilities. The majority of clinical isolates of both E.
faecalis and E. faecium generally lack the adaptive immunity CRISPR-Cas loci (207),
suggesting that the selective pressure faced by these organisms induced a trade-off of
losing some protection from potentially harmful invading DNA versus gaining the
ability to rapidly evolve new traits. Indeed, it has been shown that in strains with
functional CRISPR-Cas loci and the innate immunity restriction-modification system,
there was a 4-log reduction in the acquisition of pheromone-responsive plasmids (208).
Horizontal gene transfer has played a key role in the evolution and success of clinical
isolates of E. faecalis and E. faecium.

The most frequently reported mechanism for foreign DNA acquisition in enterococci
is via conjugation, with less information about the role of phage-mediated transduc-
tion, although there is evidence that phages could be another important mechanism
used by enterococci to share genes even between different species (209, 210). Contrary
to streptococci, natural transformation has never been observed (211).

Conjugative Transposable Elements

Conjugation is the process of genetic material transfer from a donor to a recipient
cell involving complex machineries encoded by mobilization (MOB) genes and mating
pair formation (MPF) genes (212). Conjugation occurs via conjugative plasmids and
conjugative transposons (or integrative conjugative elements). Conjugative plasmids
encode the proteins required for their transfer from a donor to a recipient cell, during
conjugation. The first report of conjugative plasmid transfer in the enterococci came
from the observation of multiple-antibiotic-resistance transfer in E. faecalis by Jacob
and Hobbs (213). Most clinical isolates carry plasmids and transposable elements that
commonly encode antibiotic resistance factors, virulence factors, and bacteriocins (210,
211). Plasmids can harbor transposons that are capable of cotransfer and integration in
the chromosome by site-specific recombination or by homologous recombination. Ten
different plasmid families have been described in enterococci based on their replication
initiation genes, but this might be only a small fraction of the actual diversity of
enterococcal plasmids (214). Different types of plasmids are found in the two most
relevant clinical species. In E. faecalis, pheromone-responsive plasmids (PRPs) are widely
distributed and are a major source of antimicrobial resistance transfer, having high
efficiency, with transfer rates of about 10�1 transconjugant cells per donor (215). PRPs
have a narrow host range; the pheromones that induce plasmid transfer are hepta-
peptides or octapeptides chromosomally encoded by lipoprotein genes (derived from
the signal peptide) and are released into the medium by the future recipient cell, which
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does not carry a PRP. PRPs encode specific receptors for a given pheromone; the
formation of a mating pair is mediated by plasmid-encoded aggregation substance,
which facilitates donor-recipient contact and is also a virulence factor, as discussed
above (216–218). PRPs have a complex regulation (for excellent reviews, see references
219 and 220). Two of the best-studied families of PRPs in E. faecalis are pCF10 and
pAD1, both of which have clinical relevance. pCF10 plasmids are mostly vehicles for
antibiotic resistance genes (215, 219), whereas pAD1 plasmids carry cytolysin, bacte-
riocins, hemolysins, and UV light resistance (218, 220–222). Remarkably, PRPs are also
able to mobilize large chromosomal regions (up to 857 kb) via the formation of a
plasmid-chromosome cointegrate (223). Non-pheromone-responsive plasmids (NPRPs)
conferring resistance to macrolides, aminoglycosides, and glycopeptides also occur in
E. faecalis and can coexist with PRPs; these plasmids show a broader host range than
PRPs (224, 225). Hybrid plasmids, derived from multiple plasmid recombination events,
are a potential problem in the spread of multidrug resistance. pRE25 was identified
from an E. faecalis food isolate, and it carries resistance to 12 antimicrobials and has a
broad host range (226). It was subsequently determined that it was widespread in E.
faecium isolates (227). Inc18-PRP hybrid plasmids are documented as disseminators of
vanA resistance between E. faecalis strains (228).

In E. faecium, there is no evidence that a system such as the PRP of E. faecalis is
largely used. There are a few reports about PRP-like systems (229, 230), but newer
literature has not provided strong evidence for the widespread use of this mechanism
in E. faecium strains. Transfer of large regions of the chromosome has also been
observed in E. faecium, although the mechanism is different from what has been
observed in E. faecalis because it is not mediated by PRPs (231–233). Interestingly, the
pbp5 gene has been shown to be transferable as part of large chromosomal regions,
and pbp5 horizontal gene transfer might be relevant in the acquisition of �-lactam
resistance in clinical strains (233, 234). Two of the most prevalent plasmid types are the
Inc18 group and the pRUM family (227). These plasmids commonly use as a mainte-
nance mechanism a toxin-antitoxin system that ensures plasmid survival even in the
absence of antibiotic selection (235). pRUM-like plasmids have a narrow host range,
mostly confined to the E. faecium species complex (236); carry resistance to erythro-
mycin, chloramphenicol, streptomycin, and streptothricin; and can carry vanA resis-
tance (218, 228). Inc18 plasmids such as pAM�1 and mosaic plasmids such as Inc18/
pRUM show a high degree of shuffling, and they are a frequent finding in clinical
isolates but are also present in sewage and animal isolates and are able to disseminate
vanA glycopeptide resistance (228, 237).

Transposable elements constitute the majority of mobile genetic elements (MGEs)
present in enterococcal genomes (Fig. 3) (238–240). CTns have a broad host range and
can cross between different species and genera and even transfer between Gram-
positive and Gram-negative bacteria. CTns are mobile elements that possess the
genetic information to mediate their own transfer within cells and between cells and
are also able to comobilize other plasmids, transposons, and large chromosomal
fragments and induce chromosomal deletions by excision (231, 241, 242). The first
conjugative transposon known to carry antibiotic resistance was identified in E. faecalis
in 1981 by Clewell and colleagues (224, 243). The authors described a chromosomally
located element named Tn916 that carried tetracycline resistance and was able to
mobilize via transposition to either the chromosome of a recipient cell or a conjugative
plasmid. Incorporation of the transposon into a conjugative plasmid increases its
frequency of transfer. Conjugative transposons can also facilitate the transfer of chro-
mosomal genes even in the absence of the transfer of the transposon itself (204). After
the description of Tn916, other conjugative transposons have been described in
enterococci, mostly associated with resistance to macrolide-lincosamide-streptogramin
B (MLSB) and, importantly, with glycopeptide resistance (vanB2 type) (235).

Insertion Sequence Elements and Tn3-Like Transposons

Insertion sequences (ISs) are the most basic transposable elements, carrying only
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information necessary for their own transposition. However, ISs can form composite
transposons by flanking resistance or pathogenesis genes, moving between replicons
by a replicative transposition mechanism. This kind of transposable elements has been
linked to high-level gentamicin resistance, such as Tn5281 or (in one instance) the
vanB1 glycopeptide resistance element Tn1547 (244–246). Tn3-like transposons move
intracellularly within or between replicons (i.e., chromosome to chromosome or chro-
mosome to plasmid) via a replicative mechanism mediated by a transposase and a
resolvase. Tn3-like transposons mostly reside within conjugative plasmids and are
associated with MLSB resistance and with high-level glycopeptide resistance (vanA
type) (167, 247).

Reports of antibiotic resistance transfer between strains of enterococci go back as
early as 1964 for chloramphenicol resistance (248). Conjugal plasmid transfer of mul-
tiple antibiotic resistance determinants has been documented in enterococci since the
1970s (213, 249). In both E. faecalis and E. faecium, vancomycin resistance is mostly
disseminated by non-pheromone-responsive plasmids; these plasmids can carry con-
jugative transposons but also nonconjugative transposons, such as the vancomycin
resistance element Tn1546 hosting the vanA operon (250, 251). The first report of a
vancomycin-resistant enterococcal outbreak appeared in 1988 and reported VRE re-
covered from patients in England since 1986 (both E. faecalis and E. faecium) (252). E.
faecalis strain V583 was the first vancomycin-resistant strain reported from the United
States (253).

POPULATION BIOLOGY

MLST schemes have been used extensively to understand the epidemiology and
population structure of the two major enterococcal pathogens (67, 68) More recently,
WGS methods have also been incorporated, and we have a fairly good picture about
how these organisms emerged as important human pathogens and the challenges that
they present.

E. faecalis strains have limited phylogenetic diversity in their core genome, with
average nucleotide identity (ANI) values of 97.7% to 99.5%; in contrast, the shared gene
content of these strains is more variable (70.95% to 96.5%) (254). This variability is due
to genome size variation attributed to gains in genetic material via horizontal gene
transfer; up to 25% of the genome in E. faecalis strains can comprise mobile elements
acquired by horizontal gene transfer events, showing an even greater degree of
recombination than E. faecium (223, 240). The genome sizes of different strains reflect
this genome plasticity, with a probable minimal genome size of 2.74 Mb and genome
sizes as large as 3.36 Mb (254). The phylogeny of E. faecalis does not show a significant

FIG 3 Transposable elements in enterococci. The cartoon depicts the three kinds of transposable
elements found in enterococci: conjugative transposons, such as Tn5382 carrying the vanB2 operon;
insertion sequence elements (IS) in the Tn3 family, such as Tn1546 carrying vanA resistance; and
composite transposons, such as Tn4001, for high-level aminoglycoside resistance. These three types of
transposable elements can exist either in the chromosome or in plasmids as part of larger mobilizable
elements.
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association of strains based on their origin (hospital isolates, strains able to colonize
hospitalized and nonhospitalized people, and animal isolates) and does not have a clear
clade structure (72), although certain clonal complexes (CCs), such as CC2, CC16, and
CC87, are more associated with multidrug-resistant strains and are enriched for mobile
elements, and CC2 and CC87 are almost exclusively identified from HAIs (255). Clinical
isolates tend to have larger genome sizes and carry more exogenously acquired DNA,
such as transposons, ISs, plasmids, and phages, than commensal strains. E. faecalis
clinical isolates are enriched for a PAI of approximately 150 kb, which harbors virulence
factors and other traits that contribute to better adaptation to the host and contains
different types of mobile elements. The E. faecalis PAI shows heterogeneity between
isolates, including within the same genetic lineage, which indicates that different
regions from the PAI can be mobilized independently (256–258). The differences
observed in gene content and the prevalence of the PAI in clinical strains suggest the
evolution of niche adaptation, suggesting that in the future, clearly separated sub-
populations of E. faecalis could appear (259). Raven and colleagues (260) found limited
international dissemination of E. faecalis, with local clonal expansion of dominant
lineages.

In contrast to E. faecalis, the population structure of E. faecium is more complex and
shows a clearer separation between clinical and commensal isolates (261, 262). E.
faecium forms two distinct clades: clade A, which mostly comprises isolates from
animal, environmental (clade A2), and clinical (clade A1) origins, and clade B, which
mostly comprises isolates obtained from nonhospitalized people (commensal) (254,
261, 263). The ANI in the core genome between clades A and B ranges between 93.9
and 96% (239, 254). The accepted cutoff for bacterial species designation is an ANI of
�94% (264). E. faecium clades A and B could be the result of a speciation process, which
in the future will lead to two separate species, but there is still gene flow between the
two groups, as evidenced by the finding of hybrid clade AB isolates (239, 263). The lack
of competition between two populations is also a factor to determine if those two
populations comprise two different species (265). Clade A1 isolates tend to have larger
genomes that are enriched in mobile elements, importantly related to antibiotic
resistance and carbohydrate utilization (263). Recombination plays a predominant role
over mutation for the diversification of the species (266). Up to 38% of the genome can
be of foreign origin (267). Clinical isolates have a larger genome than commensal
strains and animal isolates (263). Interestingly, clade A1 strains have gained predomi-
nance in the clinical setting only since the 1980s. Earlier isolates do not cluster with
clade A1 (158), perhaps due to their increased evolvability and capacity to gain new
traits.

The split between clades A1 and A2 has been calculated to have occurred roughly
80 � 30 years ago (263), probably several years before antibiotics started to be broadly
used in human health and agriculture but well within the “antibiotic era.” A recent
study with a large data set (495 isolates) challenges the subdivision of clade A into the
A1 and A2 subgroups, instead suggesting a clonal expansion of clade A strains in the
clinical setting (71); the original description of clades A1 and A2 was performed using
a data set of 58 isolates, which perhaps explains the discrepancies. The same authors
(71) also noticed that in their data set, about the same proportions of clade B isolates
were recovered from the community setting as from the health care setting, in
accordance with what was reported by Lebreton et al. (263), suggesting that clade B
strains are also part of the HAI pool. Studies with larger data sets and broader
geographic and ecological sampling would help better our understanding of the E.
faecium population structure.

Using Escherichia coli and Bacillus anthracis mutation rates to calculate the
divergence time of human commensal strains and clinical isolates, Galloway-Peña
and collaborators determined that the divergence of the two clades occurred about
1 million to 300,000 years ago (261), Interestingly, the smaller time estimate coin-
cides with new data pushing back the evolutionary history of our species, Homo
sapiens, to about 300,000 years ago (268), perhaps showing the split of a human-
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associated clade as early as the dawn of our species. In another study based on the
frequency of mutations to fosfomycin resistance, the divergence between the
commensal clade (B) and the clinical and animal clade (A) was dated at 3,000 years
ago, significantly later than the previous estimate (263). In this work, the authors
proposed that the split between the animal clade and the human commensal clade
coincided with an “increasing insulation between the flora of humans and animals,
which likely stemmed from increased urbanization, increased domestication of
animals providing restricted and specialized diets” (263). However, this interpreta-
tion is somewhat problematic because even if it is true that 3,000 years ago humans
were establishing large urban centers, there was little insulation of animals and
humans, and domestication of major animal groups occurred earlier and was not a
one-time event; moreover, it occurred independently in different geographic areas
and along a large time span and included phylogenetically unrelated species (269,
270). For many domestic species, bidirectional gene flow between the domestic
species and their wild-type counterparts existed for a long time (271). Moreover,
3,000 years ago, humans and their domestic animals were already populating the
entire globe, except for Antarctica, implying that the separation of clades A and B
occurred in a very specific geographic place in the world and that later clade B
isolates were introduced to other human populations worldwide and clade A
isolates were introduced to their domestic animals. Although it is still not com-
pletely clear what drove E. faecium into its actual population structure, it is clear
that there are two well-differentiated populations (clades A and B) occupying
mostly nonoverlapping niches.

A wealth of information has been accumulated in the past two decades about the
population biology of E. faecalis and E. faecium, but little is known about the population
structure of the non-faecium non-faecalis enterococci.

TREATMENT OF ENTEROCOCCAL INFECTIONS

The cornerstones of antimicrobial therapy of enterococcal infections have been
those �-lactams that demonstrate in vitro activity (predominantly ampicillin but also
penicillin and piperacillin) and vancomycin. Therapy with a single such agent is
generally adequate for routine infections for which bactericidal therapy is not
required (skin and soft tissue infections, urinary tract infections, surgically drained
intra-abdominal infections, and intravenous [i.v.] line-associated bloodstream infec-
tions). For those infections for which bactericidal therapy is optimal (endocarditis,
osteomyelitis, and meningitis), traditional therapy has included an active �-lactam or
vancomycin in combination with either streptomycin or gentamicin. Cure rates for
enterococcal endocarditis predating the use of combination therapy were approxi-
mately 40% with penicillin alone (144). Combining penicillin with streptomycin ele-
vated cure rates to 70% or higher (144, 145), and while there are no randomized
controlled trials to reliably define cure rates, most studies using combinations report
cure rates exceeding 70% (272).

The use of aminoglycosides to synergize with cell wall-active agents in the treat-
ment of endocarditis was followed by the emergence of strains expressing
aminoglycoside-modifying enzymes that resulted in high-level resistance to strepto-
mycin or gentamicin and negated the in vitro synergism observed against strains that
do not express these enzymes (185). Cure rates for monomicrobial therapy of endo-
carditis caused by strains expressing high-level aminoglycoside resistance appear to
approximate the dismal results observed before synergistic therapy was used, neces-
sitating alternative treatment strategies (272).

Mainardi and colleagues (149) first reported in vitro synergism between ampi-
cillin and cefotaxime against E. faecalis, showing that in vitro susceptibility to either
agent was enhanced in the presence of the other. They hypothesized that this
synergism was due to the more complete inhibition of all the enterococcal PBPs by
the combination of agents. These findings were later supported by Gavaldà and
colleagues (273), whose animal studies showed similar synergisms between ampi-
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cillin and ceftriaxone. Subsequent human studies confirmed the effect of the
combination of ampicillin and ceftriaxone against ampicillin-susceptible E. faecalis,
whether or not the causative strains expressed high-level aminoglycoside resistance
(147, 148, 274, 275). It is important to recognize that these studies are observa-
tional and not randomized, like all the data supporting the use of penicillin-
aminoglycoside combinations. These results have led to a change in the consensus
recommendations from a range of societies, including the American Heart Association
and the Infectious Diseases Society of America, for the treatment of endocarditis (276),
suggesting that ampicillin-ceftriaxone combination therapy is a reasonable treatment
option for endocarditis due to high-level aminoglycoside-resistant strains and as a
reasonable alternative for strains without high-level aminoglycoside resistance, for
example, in patients with compromised renal function for whom the risks of renal
damage from the aminoglycoside are significant.

The optimal duration of therapy for enterococcal endocarditis is 4 to 6 weeks, with
no studies available to help distinguish between these two durations. Olaison and
colleagues (277) reported a 78-patient study suggesting that the aminoglycoside
component of the combination regimen could be discontinued after 15 days without a
change in the cure rate but with beneficial effects for renal function. Retrospective data
also suggest that one can achieve cure rates comparable to those for native valve
disease in enterococcal prosthetic valve endocarditis caused by susceptible strains
(272).

More recently, an impressive Danish study (278) showed that a regimen consisting
of 17 days of intravenous treatment for endocarditis caused by one of four species (S.
aureus, streptococci, E. faecalis, or coagulase-negative staphylococci) followed by a
roughly equivalent number of days of active oral therapy was noninferior to a full
course of i.v. therapy. A total of 97 patients with E. faecalis endocarditis (39 with
prosthetic valve endocarditis) were included in that study, with results being essentially
equivalent to the overall results for the combined endpoint and for each of the
component endpoints. Caveats include that the patients had to be clinically stable at
the time of randomization, that valve replacement surgery prior to a switch to oral
therapy was permitted, and that the study was not blind. This study has the potential
to have a major impact on costs for endocarditis patients whose condition has been
stabilized after an initial 2 weeks of intravenous therapy or after surgical repair of an
infected valve.

Of course, there are patients who are unable to tolerate �-lactam antibiotics or who
are infected with E. faecium strains that are resistant to all �-lactams and vancomycin
and produce aminoglycoside-modifying enzymes. In contrast to the 1990s, when there
were no effective therapies for highly resistant strains, we now have several alternatives
with in vitro activity against resistant strains. The first of these to become clinically
available was the pristinamycin combination quinupristin-dalfopristin. This combina-
tion was synergistically active versus E. faecium strains lacking the erm macrolide
resistance gene (but not E. faecalis). Although it was shown to be an effective therapy
in the treatment of vancomycin-resistant enterococcal infections, its use was associated
with vein inflammation and significant myalgias (279). Linezolid, an oxazolidinone
antibiotic available in both i.v. and oral forms, was next licensed and has proven to be
consistently active in vitro against resistant enterococci. Limitations on its use include
bone marrow suppression when administered for more than 2 weeks (280) and an
increased risk of serotonin syndrome occurring in patients being treated with selective
serotonin reuptake inhibitors (SSRIs) (281). It is also strictly bacteriostatic, although it
has been shown to be as effective in the treatment of bacteremias as more-bactericidal
agents (282), and there have been instances of success in treating enterococcal
endocarditis (283).

Daptomycin is a cyclic lipopeptide approved in 2003 (284). It is bactericidal against
many enterococcal strains. Originally approved for a dose of 4 mg/kg of body weight/
day, pharmacodynamic analyses indicated that higher doses would be needed for
many strains (285). At present, physicians are using up to 8 to 10 mg/kg per day. One
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recent study (282) comparing daptomycin to linezolid for the treatment of enterococcal
bacteremia showed linezolid to be superior to daptomycin at a dose of 6 mg/kg/day or
lower but that the two regimens were equivalent when daptomycin was administered
in a dose of �6 mg/kg/day.

Some E. faecium strains with higher MICs of daptomycin exhibit reduced MICs
when exposed to a combination of daptomycin and a �-lactam antibiotic (to which
the strains are resistant). The mechanism(s) underlying this apparent synergism
remains unclear, although in some instances, greater binding of daptomycin to the
cell membrane was seen in the presence of ampicillin (286). Other data suggest that
such synergism occurs in strains with mutations of the liaFSR locus (203). Compel-
ling clinical data to support the improved efficacy of these combinations against
resistant strains are not available.

There remain more questions than answers for the treatment of serious multi-
resistant enterococcal infections. The Gram-Positive Committee of the Antimicrobial
Resistance Leadership Group, an NIH-funded clinical trial consortium, recently
outlined several unmet needs in the treatment of enterococcal infections, including
the role of combination therapy with �-lactams for the treatment of enterococcal
bloodstream infection and osteomyelitis, the role of combination �-lactam therapy
against vancomycin-resistant enterococci, the optimal length of therapy for
vancomycin-resistant enterococcal bloodstream infection, the optimal therapy
for vancomycin-resistant enterococcal endocarditis, and the optimal therapy for
vancomycin-resistant enterococcal infection caused by strains with elevated dap-
tomycin MICs (287).

CONCLUSIONS

Enterococci, and particularly the clinically prevalent enterococcal species E.
faecalis and E. faecium, continue to be important nosocomial pathogens. They are
hearty species capable of surviving in important biological niches, such as the
human gastrointestinal tract, and under stringent environmental conditions, facil-
itating their spread in institutions. Their broad spectrum of intrinsic resistance and
tolerance to the bactericidal activity of many agents, combined with their prodi-
gious ability to acquire resistance to available antibiotics, present ongoing thera-
peutic challenges to clinicians worldwide. They also express an increasing variety of
virulence characteristics that promote colonization and infection. Moreover, their
well-developed ability to acquire novel determinants for both resistance and
virulence has kept them ahead of the many attempts to control the damage that
they inflict on patients in our health care systems. Comprehensive strategies to
contain their spread, limit their virulence, and eliminate them from infected sites
will be required to prevent them from seriously limiting our ability to successfully
treat a variety of serious diseases.
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